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a. The circular velocity is given by

v2c =
G

R

∫
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Thus,
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Corotation resonance:
ω

m
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which yields:
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Lindblad resonances:
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which yields:
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b. The dispersion relation is:

(mΩ− ω)2 = κ2 − 2πGΣ|k|+ k2c2s .

Here this gives: (
m
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R
|k|+ k2c2s .

This is a quadratic equation, so there are two solutions for k. We take the + solution, since

it has a larger |k|, thus also a larger kR at each R, which is what it means to satisfy the

tight-winding approximation more accurately. Also, k for this solution is positive so there is

no need for the absolute value. Thus,
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We use this solution between the Lindblad resonances, R− and R+ from part a above.

Thus, the shape function is:

f(R) =

∫ R

R−

k(R′)dR′ .

The location of a spiral arm in polar coordinates is:

φ =
2π

m
l − f(R)

m
,

where l goes from 0 to m−1. We make a parametric plot of (x, y) = (R cosφ,R sinφ). Each

spiral arm is plotted separately, and then the plots are combined. The first plot below is

with the given parameters: m = 3, vc = 50 km/s, cs/vc = 0.24, vc/ω = 10 kpc. For the

second plot we choose m = 7, vc = 100 km/s, cs/vc = 0.2, and vc/ω = 20 kpc. In these

plots, the axes are in kpc.




