Cosmology 2 (Prof. Rennan Barkana): Solution to Homework 2 (Jan. 2023)

a. The circular velocity is given by

$$
v_{c}^{2}=\frac{G}{R} \int 2 \pi R \Sigma(R) d R=2 \pi G \Sigma_{0} R_{0}
$$

Thus,

$$
\Omega(R)=\frac{v_{c}}{R}=\frac{\sqrt{2 \pi G \Sigma_{0} R_{0}}}{R},
$$

and $\kappa(R)=\sqrt{2} \Omega(R)$.
Corotation resonance:

$$
\frac{\omega}{m}=\Omega
$$

which yields:

$$
R=\frac{v_{c}}{\omega} m
$$

Lindblad resonances:

$$
\frac{\omega}{m}=\Omega \mp \frac{\sqrt{2} \Omega}{m}
$$

which yields:

$$
R_{\mp}=\frac{v_{c}}{\omega}(m \mp \sqrt{2}) .
$$

b. The dispersion relation is:

$$
(m \Omega-\omega)^{2}=\kappa^{2}-2 \pi G \Sigma|k|+k^{2} c_{s}^{2}
$$

Here this gives:

$$
\left(m \frac{v_{c}}{R}-\omega\right)^{2}=\kappa^{2}-\frac{v_{c}^{2}}{R}|k|+k^{2} c_{s}^{2} .
$$

This is a quadratic equation, so there are two solutions for k. We take the + solution, since it has a larger $|k|$, thus also a larger $k R$ at each R, which is what it means to satisfy the tight-winding approximation more accurately. Also, k for this solution is positive so there is no need for the absolute value. Thus,

$$
k(R)=\frac{v_{c}^{2}}{2 c_{s}^{2} R}\left\{1+\sqrt{1+4 \frac{c_{s}^{2}}{v_{c}^{2}}\left[\left(m-\frac{\omega R}{v_{c}}\right)^{2}-2\right]}\right\}
$$

We use this solution between the Lindblad resonances, R_{-}and R_{+}from part a above. Thus, the shape function is:

$$
f(R)=\int_{R_{-}}^{R} k\left(R^{\prime}\right) d R^{\prime}
$$

The location of a spiral arm in polar coordinates is:

$$
\phi=\frac{2 \pi}{m} l-\frac{f(R)}{m}
$$

where l goes from 0 to $m-1$. We make a parametric plot of $(x, y)=(R \cos \phi, R \sin \phi)$. Each spiral arm is plotted separately, and then the plots are combined. The first plot below is with the given parameters: $m=3, v_{c}=50 \mathrm{~km} / \mathrm{s}, c_{s} / v_{c}=0.24, v_{c} / \omega=10 \mathrm{kpc}$. For the second plot we choose $m=7, v_{c}=100 \mathrm{~km} / \mathrm{s}, c_{s} / v_{c}=0.2$, and $v_{c} / \omega=20 \mathrm{kpc}$. In these plots, the axes are in kpc.

